Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Vet Sci ; 11: 1359312, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38523712

RESUMO

The newborn ovary homeobox gene (NOBOX) regulates ovarian and early oocyte development, and thus plays an essential role in reproduction. In this study, the mRNA expression level and single nucleotide polymorphism (SNP) of NOBOX in various tissues of Xiangsu pigs were studied to explore the relationship between its polymorphism and litter size traits. Also, bioinformatics was used to evaluate the effects of missense substitutions on protein structure and function. The results revealed that NOBOX is preferentially expressed in the ovary. Six mutations were detected in the NOBOX sequence, including g.1624 T>C, g.1858 G>A, g.2770 G>A, g.2821 A>G, g.5659 A>G, and g.6025 T>A, of which g.1858 G>A was a missense mutation. However, only g.1858 G>A, g.5659 A>G, and g.6025 T>A were significantly associated with litter size traits (p < 0.05). Further prediction of the effect of the missense mutation g.1858 G>A on protein function revealed that p.V82M is a non-conservative mutation that significantly reduces protein stability and thus alters protein function. Overall, these findings suggest that NOBOX polymorphism is closely related to the litter size of Xiangsu pigs, which may provide new insights into pig breeding.

2.
ACS Nano ; 17(17): 16923-16934, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37606317

RESUMO

Multidrug resistance (MDR) is a major cause of chemotherapy failure in oncology, and gene therapy is an excellent measure to reverse MDR. However, conventional gene therapy only modulates the expression of MDR-associated proteins but hardly affects their existing function, thus limiting the efficiency of tumor treatment. Herein, we designed a photoactivated DNA nanodrug (MCD@TMPyP4@DOX) to improve tumor chemosensitivity through the downregulation of MDR-related genes and mitochondria-targeted photodynamic therapy (PDT). The self-assembled DNA nanodrug encodes the mucin 1 (MUC1) aptamer and the cytochrome C (CytC) aptamer to facilitate its selective targeting to the mitochondria in tumor cells; the encoded P-gp DNAzyme can specifically cleave the substrate and silence MDR1 mRNA with the help of Mg2+ cofactors. Under near-infrared (NIR) light irradiation, PDT generates reactive oxygen species (ROS) that precisely damage the mitochondria of tumor cells and break single-stranded DNA (ssDNA) to activate MCD@TMPyP4@DOX self-disassembly for release of DOX and DNAzyme. We have demonstrated that this multifunctional DNA nanodrug has high drug delivery capacity and biosafety. It enables downregulation of P-gp expression while reducing the ATP on which P-gp pumps out drugs, improving the latency of gene therapy and synergistically reducing DOX efflux to sensitize tumor chemotherapy. We envision that this gene-modulating DNA nanodrug based on damaging mitochondria is expected to provide an important perspective for sensitizing tumor chemotherapy.


Assuntos
DNA Catalítico , Nanopartículas , Resistencia a Medicamentos Antineoplásicos , DNA , DNA de Cadeia Simples , Terapia Genética , Mitocôndrias , Nanopartículas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA